
Finite-size scaling for a relativistic Bose gas in an Einstein universe

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1987 J. Phys. A: Math. Gen. 20 6357

(http://iopscience.iop.org/0305-4470/20/18/035)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 10:36

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/20/18
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J .  Phys. A: Math.  Gen.  20 (1987) 6357-6370. Printed in the L K  

Finite-size scaling for a relativistic Bose gas 
in an Einstein universe 
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Guelph-Waterloo Program for Graduate  Work in Physics, Waterloo Campus,  University 
of Waterloo, Waterloo, Ontario,  Canada  N ? L  3G1 

Received 27 May 1987 

Abstract. The scaling hypothesis on the ‘singular’ part of the free-energy density of a finite 
system is examined in the context of a relativistic Bose gas confined to an  Einstein universe 
of radius R.  Finite-size effects in the various thermodynamic properties of the system, 
such as the free energy, the specific heat, the isothermal compressibility and  the condensate 
density, are predicted in the regions of both first-order ( T < T,) a n d  second-order ( T T,) 
phase transitions. T o  test these predictions, a detailed analytical study is carried out which 
includes the possibility of particle-antiparticle pair  production in the system. The various 
predictions of the scaling hypothesis are  fully borne out  and  the scaling functions governing 
the critical behaviour of the system are  found to be universal, irrespective of the severity 
of the relativistic effects. 

1.  Introduction 

Some time ago we carried out a detailed investigation of the critical behaviour of an  
ideal relativistic Bose gas confined to the background geometry of an  Einstein universe 
(Singh and Pathria 1984, hereafter referred to as I ) .  Taking into account the possibility 
of particle-antiparticle pair production in the system, we examined the twin problems 
of ( i )  the growth of the condensate fraction, po/p ,  and (ii) the behaviour of the specific 
heat at constant volume, c,, as a function of temperature. Though many of the results 
obtained in that paper were valid over a wide range of temperatures-from T >  T, 
down to T=O K-our physical discussion was mostly centred at the region of the 
second-order phase transition ( T  = T,). It was remarkable that our findings on the 
finite-size effects in the relativistic case turned out to be qualitatively similar to the 
ones obtained by Al’taie ( 1978) in the corresponding non-relativistic case; quantita- 
tively, of course, they depended significantly on the severity of the relativistic effects 
which, in turn, were determined by the parameter p / m 3 ,  where p is (essentially) the 
‘number density’ in the system while m is the particle mass. 

Since then considerable progress has been made in understanding finite-size effects 
in systems undergoing phase transitions, on the basis of concepts such as scaling and 
hyperuniversality (Privman and Fisher 1984, Singh and Pathria 1985, 1986, Shapiro 
1986) which enable us to make definitive predictions on the nature of these effects in 
the regions of both first-order ( T  < T,) and second-order ( T  = T,) phase transitions 
(for a review of earlier developments and for a comprehensive bibliography on the 
subject, see Barber (1983)). Using these concepts we have recently explored the problem 
of a relativistic Bose gas in a Euclidean space of geometry Ld-” x E“ (2 < d < 4, d ’ s  2) 
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under periodic boundary conditions (Singh and Pathria 1987, hereafter referred to as 
11). On one hand, we made predictions, based on the scaling hypothesis on the 
‘singular’ part of the free-energy density of the system, for quantities such as the specific 
heat, the isothermal compressibility and the condensate density which covered the 
temperature regime T <  T, as well as T =  T,; on the other hand, we carried out an  
exact analysis of the problem to derive explicit expressions for these quantities from 
which desired finite-size effects could be extracted analytically. A comparison of the 
two sets of results showed that each and every prediction of the scaling hypothesis 
was, in fact, true. At that point we felt it natural to extend these considerations to the 
situation where the Euclidean space is replaced by an Einstein universe, with d = 3  
and d‘=O,  which is inherently finite (with volume 277’R3, R being the radius of 
curvature of the 3-space) and conforms to boundary conditions that are inherently 
periodic (with period 27rR). The main purpose of such an  investigation would be to 
see if the scaling hypothesis, originally formulated for conventional geometries, stayed 
valid for curved spaces as well. Intuitively we felt that, since the major thrust of the 
arguments employed in the formulation of the hypothesis and in the derivation of the 
predictions came from the critical behaviour of the bulk system, the resulting formulae 
should apply to all finite-sized systems, irrespective of the geometrical nature of the 
space available to them. As the results reported here will show, this expectation is 
indeed upheld. 

In  0 2 we introduce the scaling hypothesis for a system of non-interacting bosons 
confined to a 3-space of uniform radius of curvature R and obtain general expressions 
for the various physical quantities of interest. In  § 3 we make specific predictions for 
these quantities in different regimes of temperature. In  Q 4 we derive the corresponding 
analytical results from which finite-size effects are readily obtained. A detailed com- 
parison of the two sets of results is carried out in 8 5 where the scaling functions 
governing the critical behaviour of the various quantities are written down explicitly. 
The agreement between the two sets of results is seen to be perfect, which validates 
the scaling hypothesis for systems in curved spaces as well. Finally, in 9 6, we conclude 
the paper with some closing remarks on this problem. 

2. Formulation of the problem 

In  accordance with 11, we propose that the ‘singular’ part of the free-energy density 
of a system of non-interacting bosons confined to an  Einstein universe of radius R 
may be expressed in the form 

f”’( T, v,; R )  T R - d Y ( ~ ,  , x2) d = 3  (1) 

where 

x, = el TR’ ’ 

U =  l / ( d  - 2 ) =  1 

x2 = ec2(v0/  T)R’ ” 

A/ Y = !(d + 2 )  = ;. 

Here, vo stands for the ‘Bose field’ (see Gunton and Buckingham 1968) conjugate to 
the ‘order parameter’ MO (=p: ,  ’, po being the condensate density in the system), i is 
the generalised temperature variable, while other quantities have their usual meanings. 
In particular, cl and are certain non-universal, system-dependent scale factors 
whose precise form can be determined from a knowledge of the thermodynamic 
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behaviour of the corresponding bulk system. The function Y ( x , ,  x2) is then a universal 
function, common to all systems in the same universality class as the given system. 

According to ( l ) ,  the 'singular' part of the zero-field specific heat per unit volume 
of the system will be given by 

where Y ( , , ( x , )  = -(a' Yiax; ' )  
will be given by (see appendix A of 11) 

The isothermal compressibility, on the other hand, 

where p is the overall 'charge density' in the system, as defined in equation (61), while 
Y(21(xl)  = -1,' Y ( , ) ( x , ) .  In view of the straightforward relationship between the scaling 
functions Y , , ,  and Y , , , ,  we conclude that, in all regimes of temperature, the product 
C ( " K  is independent of the size of the system, 

- r[p-'(a~/a~)i,iI '  ( 5 )  
and hence may be obtained directly from the bulk behaviour. For simplicity, therefore, 
we may in the following concentrate on only one of these quantities and refer to the 
other only when need arises. As regards condensate density in the system, one can 
argue that 

( 6 )  
where P ( x , )  is the corresponding scaling function. 

As shown in 11, the non-universal parameters e, i and c2 appearing in the above 
expressions can be expressed in terms of quantities pertaining to the bulk system. In  
the case under study, they turn out to be 

( 7 )  

po( T, 0 ;  R )  3 1M( T, 0; R) ( '=  e < R - ' P ( x , )  

cl i= m'P[ W P ,  m )  - W P , ,  m ) ~  

W(P,  m )  = 2 ( j p m )  I s inh( jpm)K2(  j p m )  p=1/r (8) 

t2 = ( m / P ) '  
where 

x 

, = I  

K , ( z )  being the modified Bessel functions while the bulk critical point, /3 = P c ,  is 
determined by the relationship 

w(P,, m )  = 2 r 2 p / m 3 .  (9)  
I t  may as well be noted that the bulk condensate density po( 
given by (Singh and Pandita 1983) 

0; m) in this case is 

( l o a )  
( lob )  

so that 

[C.,I~II.. r,= i 2 x 2 p / m  T, 0;  oc). 
It follows that 

(11) 
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where 

C ,  = m’pfld WldPl,  

while t is the conventional temperature variable 

t = i T - T, 1 / T, = ( P - P 1 / P .  ( 1 4 )  

Finally, we note that equation ( 5 )  in this case assumes the explicit form 

C ‘ ” K  = -P[W(P,  m ) -  W(P,,  m ) + P ( d W l d P ) ] ’ /  W’(P,, m )  ( 1 5 )  

with the limiting results 

~ ( - P  P + m  ( 1 6 ~ )  

-P:(d W l d P ) f l  Wz(Pc ,  m )  P - P c .  ( 1 6 b )  

We are now in a position to make predictions about the various physical quantities 
and the various mathematical functions involved. 

3. Prediction of finite-size effects 

(a )  For T 3 T, and R + m, we expect our hypothesis to reproduce the standard bulk 
result for c”’, namely 

T a  T,, R + E  ( 1 7 )  c”! - E + [  

where E, is non-universal. To recover ( 1 7 )  from ( 3 ) ,  we require that, as x ,  + +a, the 
scaling function Y ,  ! ( x I )  assume the asymptotic form 

y , I ! ( x , ) = - y + ~ l  X I  + +m ( 1 8 )  
with Y+ universal and such that 

E,= Y+C;’ ( 1 9 )  
where C,  is given by equation (13). The corresponding results for f”’ would be 

f”’- F _ t 3  Y ( x , )  = z + x ;  ( 2 0 )  

F, = Z-T,C;. ( 2 1 )  

Z ,= iY+.  ( 2 2 )  

with 

Now, since F,  would also be equal to iT,E,, it follows that 

As regards condensate density, we note that in this regime the total number of particles 
in  the ground state is expected to be O( 1 ) ;  accordingly, p(,(  T ;  R )  = O( R-’)). This 
requires that 

P ( x ,  

with P, universal. 

Po( T 

where 

c2 = 

- P+X,? SI + +CO 

I t  follows that 

R )  = P+C,’Cit-’R-’ T >  T,, R + s  
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(b)  For T < T, and R .+ cc, the variable x, + -E. The scaling function Y ,  , , (xl)  may 

Y , , , ( x , ) =  - Y-lxll-" XI + --CO (26) 

with Y- universal and a as yet unknown. The resulting expressions for 12"' and K 

would be 

then assume the form 

(271 C ( S '  = - Y-(  m'P W(P, m 1 - W(P,, m ) + P ( d  W I d P  11' 
[ W P , ,  m )  - W(P, m) l r rRl tU 

and  

As T +  0, W(P,  m )  vanishes as T3I2; equations ( 2 7 )  and (28) then reduce to 

c ( ' ) t  -y-[m'pw(p,, m)]z-uR-c' tu '  (29) 

and 

K = YI ' [m* W(Pc,  m)]"'P"-'R''". (30) 

Now, from general considerations based on the relationship between (i) the isothermal 
compressibility of a fluid on one hand and (ii) the integral of its correlation function 
over the space occupied by the system on the other (Pathria 19721, we find that, in 
the limit T+O, 

(31) K = V/ T = 2 = ' ~ ~ 3 .  

Comparing (30) and (311, we readily infer that 

a = 2  Y- = 1/27'. (32) 

The limiting form of the scaling function Y ( , , ( x , ) ,  as x , +  -a, is thus completely 
determined: 

Y[,)(X,) = -1/272/x , / '  x, .+ -E. (33) 

Consequently, the quantities c'" and K ,  for all T <  T,, are given explicitly by the 
expressions 

(34) 5 -~ WiP, m ) -  W P , ,  m ) + P ( d W / d p )  

and 

respectively. Equation (35) brings out a remarkable (and  somewhat unsuspected) 
relationship between the isothermal compressibility of the finite-size system under 
study and the condensate density in the corresponding bulk system. Finally, as T + Tc., 
equations (34) and (35) assume the form 

1 27r2P:(d W/d/3)zR31t12 
K =  (36) c [ i I  5 - 

2n2R31rl' WYP,, m )  
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The asymptotic behaviour of the scaling function, Y ( x , ) ,  for the free-energy density 
of the system may, in this regime, be derived from equation (33). One obtains 

with Z- universal. The corresponding expression for j’” would be 

As T-+ 0, the foregoing expression approaches the limiting value (see equation (12a) )  

( f S ’ ) o =  2 - ( 2 ~ * p / m R ’ ) .  (39) 
Now, on physical grounds we expect that the free-energy density in this limit would 
be the same as the ground-state energy density of the system, i.e. p /2mR2 (see equation 
(52), with n = 1 ) .  We therefore conclude that 

Z-  = 1 1 4 ~ ’ .  (40) 

Po= B21tl T S  T,, R-+w (41) 

As regards condensate density, we first of all expect to recover the bulk result, namely 

where B 2  is non-universal. This requires that, for x, --* -m, the scaling function P ( x , )  
of equation (6) be of the form 

P ( x , )  P- lXI l  x, + --cc (42) 

B‘ = P-C, C: .  

p o ( ~ ;  W )  = P - C ~ C ~ ~ I  = P-m’[ w(P, ,  m )  - W ( P ,  m ) ] .  

P- = 1/2n’. (45) 

with P- universal and such that 

(43 1 

(44) 
To recover the known result for po( T ;  E) (see equations (9) and ( l o b ) )  we require that 

It follows that, for all T <  T,, 

For the finite-size effect in po, we follow the line of argument presented in I1 and 
conclude that 

po(T;  R )  - P o (  T ;  02)  -- Q-mTl R T<T, ,R+cc  (46) 
with 0- universal. 

(c )  In the ‘core’ region, where lxII = O(1)  and hence / t l =  O( R - I ) ,  the functions f ‘ ” ,  
c”), K and po ,  for a fixed value of x l ,  are proportional to R-3,  R - ‘ ,  R and R - ’ ,  
respectively (see equations (11, (3),  (4) and (6)).  Accordingly, the quantities 

j’”( T,; R)R3T,’ = U, (47) 
c”’(T,; R)RC;’= U, (48) 

~ ( 7 , ;  R)R-’T , ’[p(aT, /ap)]*Cf= Uk (49) 
and 

P O (  T,; R )RC;2  = U,, ( 5 0 )  
evaluated at the erstwhile critical point T = T,, should be universal. 

This completes the set of predictions, following from hypothesis ( l ) ,  which will 
now be tested in the case of an ideal, relativistic Bose gas confined to an Einstein 
universe of radius R. 
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4. Thermodynamics of an ideal relativistic Bose gas in an Einstein universe 

We consider an ideal Bose gas composed of NI particles and N ,  antiparticles, each 
of mass m, confined to an  Einstein universe of (spatial) radius R. Since particles and  
antiparticles are supposed to be created in pairs, the system is governed by the 
conservation of the number Q ( = N I  - N,),  rather than of NI and  N2 separately; the 
conserved quantity Q may be looked upon as a kind of generalised ‘charge’. In 
equilibrium the chemical potentials of the two species will be equal and opposite: 
p l  = -p2  = p, say, with the result that (Haber and  Weldon 1981, 1982)  

N ,  = ~ { e x p [ ~ ( e - p ) I - ~ I - ’  NZ = c {exp[P( E + P ) I  - I } - ’  ( 5  1 )  
F F 

where e = ( k 2 +  m,)”?; for economy, we employ units such that h = c = k B  = 1 .  Note 
that both E and p include the rest energy m of the particle (or the antiparticle) and, 
for the mean occupation numbers in the various states to be positive definite, we must 
have lpl s E,,,. Assuming that, to begin with, p > 0, it readily follows that NI > N. 
and hence Q > O .  In view of the conservation of Q, p then stays positive under all 
circumstances. Without loss of generality, we shall assume that this indeed is the case. 

The eigenvalues, k , ,  of the wavenumber k for a free particle confined to the Einstein 
universe are given by (see, for example, Schrodinger 1938) 

k ,  = n / R  n = 1,2 ,3 , .  . . ( 5 2 )  
with multiplicity g,  = n 2 .  The pressure 3 of the system is then given by 

Following the procedure outlined in I ,  equation ( 5 3 )  can be rendered into the form 

where 

4 ’ =  (2.irRIP)q. ( 5 5 )  = ( ] 2 +  4”)’ 2 

The term with 4 = 0 yields the bulk result, 

m‘ 
3dP,  P 1 = -J ( jPm I-’ cosh(jPP 1 KAjPm 1 ( 5 6 )  

while terms with 4 Z 0 represent finite-size effects in 3. I n  the case of the latter, the 
summation over j may be replaced by an integration, which entails errors at most 
O(e -R  * )  where h denotes the mean thermal wavelength (2.irplm)’ ’ (or the Compton 
wavelength l / m )  of the particles. Thus, correct to all powers of h / R ,  

) = I  

where y is the thermogeometric parameter of the problem, 

1’ = 7 ( m ’ - P 2 ) I  2 R 
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while X , , ( y )  are special cases of the functions X( vll; y )  introduced earlier (see Singh 
and  Pathria 1985, 1987), namely 

with 1 = 1. Accordingly, 

The corresponding expression for the ‘charge density’ p can be obtained by noting that 
(61  1 p = ( N ,  - N>) /  v = (aP/ap)) ,  

with the result that 

where 

m3 
P d P ,  E L )  =7 c (j”’ sinh(jPp.)&(jPm). ( 6 3 )  

It may be mentioned here that in arriving at equation ( 6 2 )  we have also made use of 
the recurrence relation 

J = I  

d 
- [ y W , , ( y ) ]  = - 2 y 2 ” - 1 x u - , ( y ) .  ( 6 4 )  
dY 

In the region of phase transition ( p  = m),  equations ( 5 7 )  and ( 6 2 )  take the form 

The thermal free-energy density of the system is then given by 

F - m Q  (p.Q--3’V)-mQ 
= (p .  - m ) p - P  ( 6 7 )  f=-- - 

V V 

from which the ‘singular’ part o f f ”  can be readily extracted. To the desired order 
in ( y /  R ) ,  we obtain 

f”= 1 2 r 4 p R 3  . (l+--[X? Jn 2(y)+Xt, A y ) + X ,  4 ( 6 8 )  
v 7  6 

In view of the fact that 

I f - l  ~ y )  = v5 / (e1 ’  - 1 )  ( 6 9 )  

equation ( 6 6 ) ,  again to the desired order in ( y / R ) ,  gives 
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Now, the bulk critical point, p = p, ,  is determined by the condition p R ( P c ,  m )  = p 
which, according to (63 ) ,  may be written as 

In terms of the function W(p,  m )  defined in (8),  equations (70)  and (71 )  take the form 

m’pR[ W(p,  m )  - W ( p , ,  m)] = y  coth y (72)  

~ ( p , ,  m )  = 2rr’p/m3 (73)  

and 

respectively. Equations (68) and (72)  constitute the central results of this calculation. 
Corresponding results for the ‘singular’ part of the specific heat and the isothermal 

compressibility of the system turn out to be 

dSi = - p ’ [ a 2 ( p f s ’ ) / a p ‘ ] ,  

C ” ’ K  = -(m6p/47r4p’)[ W(p,  m ) -  W(p,,  m ) + P ( d  Wldp)]’ (76)  

and agrees with the bulk result (15). As regards condensate density, we simply quote 
the expression derived in I, namely 

p o = m / p R ( y 2 + . r r 2 )  

= P (  1 - ;;;,“m‘i) 
Recalling the bulk result ( l o b ) ,  
is given by 

we find that the finite-size effect in p o ,  for all T S  T,, 

We shall now compare our analytical results for the various quantities of interest with 
the predictions made in 0 3. 

5. Verification of the scaling predictions 

We start with the observation that, with cl i given by (71, the constraint equation (72)  
assumes the remarkably simple form 

(79)  x1 = y coth J‘ 
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which determines y as a function of the scaled variable x, .  It  is now straightforward 
to see that expressions (681, (74), (75) and (77) indeed conform to the scaled forms 
( l ) ,  (3), (4) and (6), respectively, with scaling functions 

(80) 

(81) 

Y 3  
12T4 Y(xi) =-{I + ( ~ / J T ) [ Y ~ ~ , ~ ( Y ) + ~ ~ ~ ~ , , , ( Y ) + , C ~ C - , , Z ( Y ) I }  

- 1  

and 

P ( X l )  = ( y 2 +  ..‘)-I 

Of course, to express these functions in terms of the variable x,, we have to eliminate 
y with the help of equation (79). For this, we consider the various regimes of 
temperature one by one. 

( a )  T &  T,, R +a. In this regime x1 + +w, with the result that y diverges as 

y ( x l )  % x l [ l - 2  exp(-2xl)l XI + +Co. (83) 

In view of the fact that, for y >> 1, 
y{”(y) ~ & p + I K )  

scaling functions (80) and (81) assume the form 

) Y(Xl) -- x’ (1 +: exp(-2xl) 
12.n4 

and 

(86) 
XI Y,I,(XJ = -[ y~2)(xI) l - I  = -3 [ 1 +4xl  exp( -2x,)]. 

Equations (85) and (86) agree with predictions (18) and (20), respectively, with 

z+ = 1 1 1 2 ~ ~  Y+ = 1 1 2 ~ ~  (87) 

in further agreement with prediction (22). At the same time, corrections to standard 
bulk behaviour turn out to be exponentially small. It seems instructive to express these 
corrections in terms of the variable (/ R, where 6 is the ‘correlation length’ appropriate 
to the case under study (see Singh and Pandita 1983), namely 

(88) 6 = (,* - @ 2 )  - 1 1 2  - - TR/y z= TR/XI = TIC1 t. 

We thus get 

and 

f”%- ‘”’ ( 1 f 3 e x p ( - 2 ~ R / t )  
12T4p, T~ 

~ T R  
c l ”  f - __ 2 ‘” T4 (1 exp( - 2 r R / ( ) )  

K =  m 2  (1 -? exp(-2nR/() 
2P’ACIt 
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It is gratifying that the exponent ( 2 n R / ( )  appearing here is precisely what one would 
expect on the basis of the corresponding flat-space results (Singh and Pathria 1987), 
for 27rR is exactly the 'period' in space for the wavefunctions appropriate to the 
Einstein universe-just as L was in the case of the flat space. 

Finally, the scaling function for the condensate density in this regime takes the form 

P ( x , )  X T 2  XI +r (92)  

which agrees with prediction (23 ) ,  with P, = 1. At the same time, equation (77a)  gives 

po= m/P,C?t'R' (93) 

which agrees with equations (24) and (25).  

be written as 
( b )  T < T, and R + X. In this regime x I  + --M and by equation (79), which may 

y 2 +  - 7 r 2 .  This is not surprising because, in this limit, the chemical potential p tends 
to the lowest eigenvalue of energy, i.e. p + e,  = (m '+  1 / R 2 ) '  2 =  m + 1/2mR', with the 
result that y' = d R ' (  m z -  p 2 )  + - 7 r 2 .  More accurately, 

(95) 

To determine the behaviour of the various scaling functions in this regime we must 
first of all express them as explicit functions of the variable y' ,  so that a smooth passage 
from y 2  > 0 to y' < 0 may be made without encountering any 'awkwardness' at y2 = 0. 
This has been done in the appendix, which leads to the following results. 

As y 2 +  -T', the scaling function Y i l l ( x , )  behaves asymptotically as (see equations 
(95) and (A5)) 

3 ,  

y2= -r'+27r'/x1/-1 -37r-/x,/-- XI + -E. 

in perfect agreement with prediction (33). It follows that this will yield the same 
expressions for c"' and K as shown in equations (34)-(36). As for the function Y ( x , ) ,  
we obtain, with the help of equations (95) and (A9), 

Y ( x , ) Z L  27r' [&+In( y-+7r-  1 . 5 )  +constant] 

1 1 
4 r -  2 r- 

2 7  Ix,I-- In/x,I+constant (97)  

in perfect agreement with predictions ( 3 7 )  and (40); this will obviously yield the same 
expression f o r f i s '  as shown in equation (38). As regards the constant term in (971, it 
could not be predicted on the basis of general considerations of 5 3 .  It can, however, 
be determined numerically with the help of equations (94) and (A9).  

Finally, the scaling function for p,, turns out to be (see equations ( 8 2 )  and (95)) 

The leading term in (98),  which yields the bulk result for P,~, indeed agrees with 
predictions (42) and (45); the next term yields the finite-size effect, po( T ;  R )  - p J  T ;  m), 
which agrees with prediction (46) ,  with Q- = 3 1 4 ~ ' .  
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( c )  In the 'core' region, where IxI17= O(1)  and hence It1 = O ( R - ' ) ,  y' would be 
significantly different from -7' but 1y-l would still be of order unity. Accordingly, 
f"', c"', K and po would be of order R - 7 ,  R - I ,  R and R - ' ,  respectively (see equations 
(681, (74), (75) and ( 7 7 ~ ) ) .  This is indeed the way it was predicted in D 3. More 
specifically, however, we should check that the quantities (47)-( 50), evaluated at the 
erstwhile critical point, T = T,, are indeed universal. 

For this, we note that, by equation (79), (ji2)' = -sr'/4. It then follows (see equations 
(68), (80) and (A9)) that 

which is clearly a universal number. Similarly, 
Y 2  -I 1 

q z l  ( q - - i ) -  2 
87~ '  1 --> =-- (100) 

another universal number. Next, we observe that the derivative (dp,/dp) for the bulk 
system is given by (see equation (73)) 

( W a d  = W , / p ( a w / a p ) ,  (101) 

U, = Y, , , (o)  = 2x4. (102) 

U,, = 4 1 3 ~ ' .  (103) 

with the result that 

Finally, by equations (50) and (77), we obtain the universal number 

This completes the verification of the various predictions made in § 3 .  

6. Concluding remarks 

In this paper we have shown analytically that the various predictions of the finite-size 
scaling hypothesis are fully borne out in the case of an ideal relativistic Bose gas 
confined to an  Einstein universe of radius R. With pair production included, the scaling 
functions governing the thermodynamic behaviour of the system, for T < T, as well 
as T =  T,, are found to be universal, irrespective of the severity of the relativistic 
effects. The influence of the latter enters only through non-universal, model-dependent 
(and, in general, temperature-dependent) parameters 6, i and 6' which are completely 
determined from the properties of the corresponding bulk system. From a cosmological 
point of view, these calculations may find relevance in the context of a primordial 
massive photon gas, as discussed by Kuzmin and Shaposhnikov (1979), with Bose- 
Einstein condensation playing a vital role in the early epoch of the universe. 

A natural generalisation of the present study would be to investigate the behaviour 
of an ideal relativistic Bose gas confined to the space Y - d  x%'  which consists of 
an infinite Euclidean space of dimensionality d '  associated with a finite curved space 
of dimensionality d - d ' .  A case of immediate interest would be the one for which 
d = 3 + d ' ,  with 0 s  d ' <  1; the limit d ' +  1 may then elucidate the influence of the 
'curvature of the 9 space' on the passage of the system from the hyperscaling regime 
( d  < 4 )  into the mean-field regime ( d  > 4) through the marginal dimensionality d = 4. 
Such a study would supplement a recent investigation by Cardy (1985) who has 
examined the behaviour of the spherical model of ferromagnetism in the space Y'-' x 
9', with 2 < d < 4. Work along these lines is in progress. 
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Appendix 

To determine the behaviour of the scaling functions Y ( x , )  and Y c l , ( x l )  for general y, 
we start with the function 

X 

X t - l , 2 ( y ) = J n  1 e - ” Y = i J x ( c o t h y - l )  
q = l  

and make use of the identity (see Morse and Feshbach 1953) 

1 
= c o t h y = y  , , , 

q=-x q = - r  y -+  77-q- 

to obtain 

With the help of the recurrence relation (64), this gives 

1 “  1 
y - ’ K ,  A y ) = -  -,+ 2 , , , ,) 3 2y y = - ”  (y -+  7 T - q ) -  

The scaling function Y ( l , ( x l )  (see equation (81)) then takes the simple form 

Next, we observe that 

so that 

y X  r ( y ) = J ? r [ y - l n ( 2 s i n h y ) ] = ~ / x  y - ln (2y) -  In( I + & ) ]  7T-q- 
y = l  

Again, using the recurrence relation (64), we obtain 

Note that the constant of integration in this expression has been determined by using 
the actual value of the function at y2  = 0. The scaling function Y ( x , )  (see equation 
(80 1 )  is now obtained by combining equations (A3), (A7) and (A8),  with the result that 
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It seems important to point out here that, whereas expressions (A3),  (A4), (A7) 
and (A8) for the functions X , . ( y )  contain terms (involving In y and odd powers of y )  
which, as functions of the physical parameter p ( - m  -y2/27r’mR’), are singular at 
p = m, i.e. at y’ = 0, no such terms appear in the final expressions, (A5) and (A9), for 
the scaling functions Y ( x l )  and Y ,  l , ( x , ) .  Accordingly, the latter functions vary 
smoothly with p (or, for that matter, with y’) for all p < e ,  (i.e. all J , ~ >  -n-’), as 
indeed should be the case for a finite system at T > 0 K. 
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